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Abstract
Cancer is the second leading cause of death in the U.S., and millions of novel cancer 

cases are being diagnosed each year.  While chemotherapy and ionizing radiation are effective 
treatments against these malignant tumors, the adverse effects that accompany such treatments 
are devastating.  In order to find alternative treatment methods with less side effects, we turn 
to Eastern herbal medicine.  Recent scientific research has found that Tripterygium wilfordii, 
an herbal medicine traditionally used to treat inflammation in China, contains compounds 
(triptolide and celastrol) that prevent the growth of solid tumors, induce apoptosis, and prevent 
metastasis of developed tumors.  Investigations on these compounds on various cancer cells 
lines (in vitro and in vivo) have revealed insight into their mechanism, mode of action, and 
toxicity.  In order to circumvent the potentially fatal side effects of triptolide and celastrol, it 
was proposed that roots of T. wilfordii, from which the compounds are extracted, be used as a 
treatment for cancer.  Methods for testing the efficacy and toxicity of the roots on the different 
cell lines previously studied are outlined in this paper.  If the results from the proposed experi-
ment conflict with expectation, then future studies on combination drugs using triptolide and 
celastrol with other non-bioactive compounds within the roots should be done to develop new 
anti-cancer drugs with low toxicity.
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Feasibility of Integrating Tripterygium wilfordii into Modern Cancer Therapy 
for Increased Efficacy and Minimal Toxicity
Introduction

Diseases are becoming more resistant to drugs being used on the market.  The current solu-
tion to such problems is to develop stronger and more potent drugs to combat these diseases.  
However, accompanying these powerful drugs are adverse side effects that are proportional to 
the effectiveness.  One disease that will arouse the most fear and concern among the general 
populace nowadays is cancer.  According to the CDC, cancer is the second leading cause of 
death in the U.S, and the American Cancer Society reported that millions of new cancer cases 
are being diagnosed each year.  Cancer is a disease due to a loss of cell division control, in which 
the cells divide continuously and do not respond to the appropriate signaling from its environ-
ment.  The malignant cell will develop into a tumor and then begin to spread, or metastasize, 
to surrounding organs and organ systems along the blood stream.  Current methods of cancer 
therapy include chemotherapy, which uses cytotoxic compounds to induce apoptosis within 
the cancer cells and/or reactivate the regulatory proteins in the cells, and ionizing radiation, 
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which uses potent electromagnetic waves and particles to bombard the tumors and cause DNA 
damage, causing it to stop replicating and potentially induce apoptosis.  Although effective, 
chemotherapy and ionizing radiation also induce adverse side effects, such as hair loss, extra-
neous damage to healthy cells, and decreased immunity.  In order to find alternative treatment 
methods with reduced side effects, here, we turn to Eastern medicine, more specifically Chinese 
medicine.

Chinese mythology tells of Emperor Yan, who lived more than four thousand years ago, 
as the first Chinese pharmacopeia and the founder of Chinese medicine.  It was said that he 
personally compounded plants and herbs and tested their effects on himself.  He eventually 
died by his hand when he unknowingly took an herbal poison (Grazoise et al. 2).  The Chinese 
medicine that exists today has evolved much since the times of Yan, and its largest influence 
is Taoism, a philosophy and religion founded by Lao Tzu in the first century B.C.E.  Chinese 
medicine incorporated the philosophy of Taoism into its practice, viewing illnesses and diseases 
as physical manifestations of an imbalance of qi, the life-force within the body.  Analogous to 
the Five Elements of Chinese philosophy (wood, fire, earth, metal, and water), the ancient phy-
sicians also viewed the human body as consisting of five organ networks — the liver, the heart, 
the spleen, the lung, and the kidney.  Different symptoms are associated with different organ 
networks, and treatments are prescribed by the differential symptoms and vitals.  The most 
well-known methods of treatment in Chinese medicine are acupuncture and herbal medicine 
(Chen and Xu 226-227).

Acupuncture is used to alter the circulation of qi in order to restore the proper balance to 
the body, allowing it to heal itself.  Acupuncturists embed needles into “specific locations (acu-
points) along the channels that conduct the qi through the body” (Chen and Xu 227).  Aside 
from acupuncture, Chinese medicine also has other ways of altering the flow of qi, including 
variants of acupuncture, such as moxibusion and tuina, and qi gong.  Moxibustion is similar 
to acupuncture, with the exception that it uses a burning herb called moxa instead of needles.  
Tuina is another variant of acupuncture, where hand techniques are used to apply pressure on 
the acupoints or other specific locations to affect the circulation of qi.  Qi gong is the practice of 
using breathing techniques and meditation to alter one’s qi.  This is can be done by the patient 
alone or alongside the physician who gives guided instruction as to how to direct the qi (Chen 
and Xu 227).

The other form of treatment, herbal medicine, is also quite renowned, even in Europe 
and in the United States. Grazoise et al. wrote that currently there are 11,146 plants species 
representing 2,309 genera and 383 families being used in Chinese medicine, along with 1,518 
species of animals and 80 other substances for the preparation of herbal medicine (2).  It is 
widely known that one main difference between Western and Eastern medicine (in this case, 
Chinese medicine, but this can be generalized to include ancient medical practices in most Far 
East countries) is that Western medicine uses single-compound drugs that affect the immediate 
symptoms whereas Eastern medicine uses herbs that “treat the underlying condition as defined 
by traditional diagnosis” (Chen and Xu 227).  In addition, Chinese herbs are known for the 
lack of adverse side effects that typically accompany Western drugs (Chen and Xu 227). Many 
of the differences between Chinese and Western medicine are highlighted in Table 1 below.

 



A U C T U S  // VCU’s Journal of Undergraduate Research and Creativity // STEM //  October 2016 3

Recent cancer research has gained interest in a plant used in Chinese medicine called 
Tripterygium wilfordii (Grazoise, Lila, and Raskin).  Tripterygium wilfordii (雷公藤, lei gong 
teng; “thunder god vine”) (see Figure 1) is a deciduous subshrub and climber native to east 
and southeast China, Japan, Korea, and northeast Myanmar (“Tripterygium wilfordii in Flo-
ra of China @ efloras.org”).  The plant may be known to be toxic. However, its roots possess 
therapeutic effects and, when prepared properly can be used as an herbal medicine.  It has been 
traditionally used for the treatment of fevers, chills, and inflammatory diseases.  Research has 
shown that the roots of T. wilfordii contain two main bioactive compounds — triptolide (see 
Figure 2) and celastrol (see Figure 3).  Because of their anti-inflammatory effects, research in 
developing these compounds into drugs for rheumatoid arthritis are taking place in China, but 
more recently, researchers have found that triptolide and celastrol possess other therapeutic 
effects. Triptolide and celastrol have also exhibited potent anti-tumor activities, making them 
strong candidates for novel anti-cancer drugs.  However, despite their abilities to prevent tumor 
growth, induce apoptosis, and prevent metastasis of developed tumors, triptolide and celastrol 
also possess strong adverse effects, such as reproductive damage to both males and females, in-
duce nausea, and cause diarrhea.  Surprisingly the root as a whole is not toxic. Thus, to make use 
of the therapeutic effects of triptolide and celastrol, more research must be conducted using a 
crude extract of the roots of the plant rather than simply studying isolated compounds that are 
already known to produce damaging side-effects.

Table 1. Chinese Medicine vs. Western Medicine

Medical View Chinese Western

Diagnosis/Treatment Philosophic Scientific

Clinical Distinction Wholesome Local

Medicine Natural Chemical

Study Method Human Experience Clinical Lab Testing

Preventive View Preventive Sanitary

Treatment Method Individualized Standardized

Treatment Goal “Cure” oriented Reduction of Symptoms

Treatment Views Natural Invasive

Note: From “Consumers’ Perceptions of Chinese Vs. Western Medicine” by Piron, Ching, Peng, and Ching.
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Therapeutic Effects of Triptolide for Cancer

Triptolide (PG490) is a diterpenoid triepoxide natural product extracted from the roots 
of T. wilfordii.  It exhibits potent anti-tumor activities through the inhibition of tumor forma-
tion and proliferation, the induction of apoptosis, and the inhibition of angiogenesis in a wide 
variety of cancer cells.  The results of these combined effects localize the tumor by hindering 
metastasis and then eliminate it by killing the malignant cells.  Therefore, triptolide is a strong 
drug candidate for future cancer therapy.

According to a literature review by Grazoise, Lila, and Raskin, triptolide has demonstrated 
anti-tumor activities in colorectal cancer, oral cancer, breast cancer, ovarian cancer, and many 
other solid tumors in both in vitro and in vivo studies (7).  This property of triptolide to act on 
a wide variety of cancer cells makes it a very appealing anti-cancer agent.  An experiment con-
ducted by Yang et al. showed that triptolide inhibited the growth of four different solid tumor 
lines “with distinct origins and of different p53 status.” These lines include B16 mouse melano-
ma, MDA-435 human breast cancer, TSU bladder cancer, and MGC80-3 gastric cancer (65).  
In the in vitro component of the experiment, Yang et al. found that “after 2 days of treatment, 
the proliferation of the tumor cells was significantly [(p<0.05)] inhibited by [triptolide] in a 
dose-dependent manner” (67).  Yang et al. also found that triptolide exhibited stronger potency 
than Taxol, a currently used chemotherapeutic in patients. At a concentration of 25 ng/mL (70 
μM) triptolide inhibited growth more than Taxol at 100 ng/mL (117 μM).  Additionally, Yang 
et al. noted that the maximum effects of triptolide only showed 3-4 days after the treatment 
(67).  The superior potency of triptolide over currently used chemotherapeutic drugs is a great 
advantage.  With stronger potency, lower dosages can be used, and thus, perhaps adverse effects 
can be mitigated to some extent.  However, it must also be taken into consideration that per-
haps the reason for the stronger potency of triptolide over Taxol may not be solely its pharma-
codynamics.  A confounding variable that was not examined is the cells’ resistance to Taxol.  It 
is not uncommon for continued usage of a drug to lead to drug resistance through metabolism.

For the in vivo study using mice, triptolide again inhibited the growth of all four cancer 
cell lines, but at different potency (Yang et al. 68).  Yang et al. administered treatment of trip-
tolide at 0.15 mg/kg/day i.p., which they found to be 60% of the maximum tolerated dosage.  
The B16 melanoma cancer cell line’s growth was inhibited by 50% and the MGC80-3 gastric 
cancer cell line was inhibited by 90% when compared to the control (68).  The results from this 
experiment suggested that triptolide is able to inhibit the proliferation of malignant tumors of 
many types, but its efficacy is cell-specific. In addition, due to the different status of p53, Yang 
et al. suggested that triptolide’s mechanism of action regarding anti-proliferation does not in-

Figure 1. T. wilfordii (雷公
藤, lei gong teng; “thunder 
god vine”)

Figure3. Celastrol (C29H38O4,MW: 
450.6152)

Figure 2. Triptolide  
(C20H24O6, MW: 360.404)
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volve the tumor suppressor gene p53 (70).
A study of triptolide on human prostatic epithelial cells by Kiviharju et al. yielded similar 

results.  When Kiviharju et al. treated cultures of low cell density with triptolide at a concentra-
tion of 1 ng/mL, “[c]omplete growth inhibition of all cell strains occurred, with half-maximal 
growth inhibition at ~0.1 ng/mL” (2668).  The different cell strains were all prostatic epithelial 
cells, but they were taken from different locations.  One strain was taken from an adenocarcino-
ma, and the other four were taken from the normal peripheral zone (2267).  Given the results of 
this study when compared to the one by Yang et al., the proposition that triptolide’s anti-tumor 
effect is cell-specific gains further support, and triptolide may be most potent on prostate can-
cer, since only a low concentration is needed to bring full inhibition in prostatic cells.

Another aspect of triptolide’s effects on cancer is its ability to induce apoptosis.  Kiviharju 
et al. conducted an analysis of triptolide’s pro-apoptotic ability after witnessing the decline in 
cell viability.  The researchers treated the E-CA-12 cell line (30% intraductal carcinoma/70% 
Gleason Grade 4) with triptolide for 3 days.  Kiviharju et al. found that at 1 ng/mL, triptolide 
did not cause apoptosis during the 3-day period (2268).  However, at higher concentrations (≥ 
50 ng/mL), triptolide increased the apoptosis rate by 19% after 24 hours, and after 48 hours, 
“the number of apoptotic cells in the treated population increased substantially” (2669).

In contrast, after finding that triptolide inhibits the proliferation of tumor cells, Yang et 
al. performed a Western blot to examine triptolide’s mechanism for inducing apoptosis.  The 
researchers found that triptolide activated 2 key molecules in the apoptotic pathways: caspase-3 
and Poly (ADP-ribose) polymerase (PARP) (69).  After Yang et al. began to treat MDA-435 
(human breast cancer) cells with triptolide, there was an increase in caspase-3 within 2 days and 
“a shift in PARP from its intact molecule into its subunit of Mr 89000, which peaked on the 
day 4 of the treatment” (69).  Yang et al. reported that “Western blotting analysis also revealed 
that the treatment with [triptolide] for 3 days caused a significant reduction in c-myc and two 
pairs of cell cycle-promoting protein complexes, cyclinA/cdk2 and cyclinB/cdc2, and cyclin 
D1 as well the phosphorylated nonfunctional pRb” (69-70).

Triptolide can also inhibit angiogenesis, which is vital for growth and metastasis of tumors.  
This ability to inhibit angiogenesis also contributes to triptolide’s overall anti-proliferative ef-
fects.  In an in vivo study of the anti-angiogenesis effects of terpenoids in T. wilfordii, He et 
al. reported that triptolide, extracted by ethyl acetate from a 95% ethanol crude extraction, 
“inhibited 20% of vessel formation” with a concentration of 0.31 μM, and “inhibition reached 
a plateau of nearly 50% by 1.2 μM” in zebrafish models (“Antiangiogenic Activity of Tripte-
rygium wilfordii and its Terpenoids” 64).  Upon further analysis, He et al. found that triptolide 
inhibited angiogenesis by “selectively reduc[ing] both angpt2 and tie2 expression in a time- 
and dose- dependent manner” (“Antiangiogenic Activity of Tripterygium wilfordii and its Ter-
penoids” 64).  He et al. noted that a different study of triptolide showed that it also inhibited 
inflammation, another result of angiogenesis, via inhibiting vegfa expression and production, 
and surmised that the discrepancy may be due to the usage of artificially induced inflammation 
and/or the difference in cell types used for the studies (“Antiangiogenic Activity of Tripterygium 
wilfordii and its Terpenoids” 68).  Therefore, “triptolide might attenuate angiogenesis via dis-
tinct mechanisms” depending on the cell type (“Antiangiogenic Activity of Tripterygium wilfor-
dii and its Terpenoids” 67).  

He et al. then proceeded to test the hypothesis of whether the results on zebrafish could be 
applied to mammalian cancer cells as well.  In their follow-up experiment, He et al. reported 
that “following 24-hour treatment, triptolide at 50 nM suppressed (vascular endothelial growth 
factor receptor-2) VEGFR-2 and Tie2 mRNA expression by more than 70% compared with 
the control” (“Triptolide Functions as a Potent Angiogenesis Inhibitor” 269).  As He et al. has 
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hypothesized in their previous study, the mechanism of triptolide to inhibit angiogenesis does 
change according to cell type.  In the zebrafish embryos, the genes inhibited were angpt2 and 
tie2, and in HUVECs, the genes were VEGFR-2 and Tie2.  The inhibitory effects on these 
genes were both dose-dependent and time-dependent.  Triptolide fully inhibited the expression 
of VEGFR-2 at 100 nM, and the maximum inhibition of both genes occurred 18-24 hours 
after treatment (“Triptolide Functions as a Potent Angiogenesis Inhibitor” 269-270).  

While the studies done by He et al. showed promising results for the anti-angiogenic prop-
erty of triptolide, there are some limitations to utilizing the information.  First, the in vivo 
study done in 2009 was performed on Danio rerio, or zebrafish.  While it is clear why zebrafish 
were chosen to be tested, it is difficult to generalize the findings to apply to humans, who are 
the intended recipients of the drug.  The second study in 2010, an in vitro study, may have 
been an attempt to rectify this conundrum — and it does to some extent — but the lack of an 
in vivo study using human umbilical vein cells (HUVECs) or any other type of human cancer 
xenografts in mice to examine angiogenesis does not allow for the generalization of triptolide’s 
anti-angiogenic activities in humans.

Therapeutic Effects of Celastrol for Cancer
Celastrol, or tripterine, is a quinine methide triterpenoid extracted from the roots of T. 

wilfordii and modulates many biochemical pathways and molecular targets, such as tumor ne-
crosis factor-α (TNF-α), nuclear factor kappa B (NF-κB), cyclooxygenase-2 (COX-2), VEFG, 
Akt, C-X-C chemokine receptor type 4 (CXCR-4), pro-inflammatory cytokines, and chemo-
kines.  These molecules are involved in the initiation, proliferation, and progression of tumors; 
thus, celastrol, which interferes with the activities of these molecules, is another strong poten-
tial drug candidate for future cancer therapy. According to a literature review by Kannaiyan et 
al., “celastrol has been shown to inhibit the proliferation of various cancer cell lines including 
C6 glioma cell lines, human monocytic leukemia cell lines, melanoma cell lines, pancreatic 
cancer cell lines, 8266 myeloma cell lines, K-562, and human chronic myelogenous leukemia 
cell lines” (13).  The wide range of effectiveness of celastrol is similar to triptolide and makes 
celastrol a strong drug candidate for cancer therapy.

Peng et al. conducted a study to investigate the anti-proliferative effects of celastrol in 
human monocytic leukemia cell U937 previously mentioned. Peng et al. treated the U937 
cells with varying concentrations of celastrol, ranging from 0 to 2000 nM (3).  In the untreated 
control group, the cells rapidly grew, reaching 2.4 times the initial quantity in one day.  With a 
treatment of 400 nM, a difference in cell numbers began to appear between the experimental 
group and the control, and at 1600 nM, the numbers of cells was almost the same as the initial 
value.  Further analysis of the mechanism behind the anti-proliferative property of celastrol re-
vealed that celastrol’s mechanism is dose-dependent.  For dosages lower than 800 nM, “the total 
number of cells (living and dead) decreased, but dead cell numbers remained constant” and 
“with doses of 800 nM and higher, dead cells increased as dose increased” (Peng et al. 2).  Based 
on these observations, Peng et al. concluded that at low concentrations, celastrol disrupted cell 
division, and at higher concentrations, celastrol also induced apoptosis, evident by the increas-
ing number of dead cells.  Peng et al. performed flow cytometry analysis and Western blotting 
analysis and found that the disruption of cell division was caused by the reduction in the levels 
of, cyclin dependent kinase 2 (CDK2), CDK4, and CDK6, thus arresting the U937 cells in 
G0/G1. Cyclin D1 was also down-regulated by celastrol, but it was shown to have no effect on 
the cell cycle arrest (2).  

When comparing these anti-cancer effects of celastrol to those of triptolide, the results are 
the same: at low dosages, both triptolide and celastrol arrest cell cycle progression, and at high 
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dosages, they induce apoptosis.  The difference in their chemical structure, however, changes 
the pathway that the two compounds accomplish these results. This variability proves advan-
tageous and supports the implementation of an herbal treatment, containing both terpenoids 
with lower toxicity, as the variability will allow the herbal treatment to interfere in a diverse se-
lection of biochemical pathways, making it more difficult for the tumors to develop a resistance 
to the treatment. 

Like triptolide, celastrol is also capable of inducing apoptosis in tumor cells, although 
this aspect of celastrol’s anti-cancer effect is less studied. Pang et al. noticed that in their in vivo 
study using a prostate cancer (PC-3) xenograft, “growth was strongly suppressed by [c]elastrol 
administration, suggesting [c]elastrol also has direct cytotoxic effects on cancer cells besides its 
anti-angiogenic effects seen on endothelial cells” (1956). Pang et al. proceeded to examine these 
other cytotoxic effects by performing a cell viability assay. The results showed that cells that 
were treated with celastrol exhibited a significant decrease in cell vitality. Pang et al. also found 
evidence of tumor cell apoptosis via the detection of full-length PARP1 and its large cleavage 
fragment (1956). 

Celastrol also inhibits angiogenesis, thus preventing metastasis. The study by He et al., 
mentioned in the previous section, regarding anti-angiogenic activities of terpenoids also re-
vealed that celastrol is capable of preventing angiogenesis.  He et al. reported that celastrol 
“reduced vessel formation by more than 30% at 0.62 μM but killed 50% of the [zebrafish] 
embryos at higher concentrations” (“Antiangiogenic Activity of Tripterygium wilfordii and its 
Terpenoids” 66).  He et al. concluded from this result that celastrol was less potent and less spe-
cific than triptolide (“Antiangiogenic Activity of Tripterygium wilfordii and its Terpenoids” 66).  

In other studies of celastrol’s anti-angiogenic effects, Sethi et al. and Pang et al. found 
that celastrol’s ability to inhibit tumor angiogenesis is related to the down-regulation of VEGF.  
Sethi et al. found that “as indicated by electrophoretic mobility shift assay (EMSA), celastrol 
suppressed TNF-induced NF-κB activation in a dose-dependent manner” (2730).  NF-κB is a 
transcription factor that regulates the activities of genes involved in cell proliferation, survival, 
angiogenesis, and invasion, and it regulates the expression of VEGF.  Further experimentation 
by Sethi et al. revealed that the inhibition of NF-κB by celastrol is not cell-specific, as celastrol 
exhibited the same results in lung adenocarcinoma (H1299) cell lines and embryonic kidney 
(A293) cell lines.  Sethi et al. also discovered that celastrol inhibits the constitutive activation 
of NF-κB in multiple myeloma (U266) and bladder cancer (253JBV) cell lines, which further 
demonstrates the lack of cell-specificity (2731) — an appealing characteristic of celastrol.  

Similarly, Pang et al. found that celastrol inhibits VEGFs, which are also responsible for 
angiogenesis, in three different types of studies: in vitro, ex vivo, and in vivo.  In the in vitro 
study, Pang et al. found that “treatments with 1 or 2 μmol/L [c]elastrol abolished the VEGF-in-
duced tubule formation of HUVECs” (1955).  In addition, Pang et al. witnessed that HU-
VECs treated with 1 μmol/L showed a significant decrease in VEGF-induced growth.  Pang et 
al. concluded that “[c]elastrol could block VEGF-induced angiogenesis in vitro by inhibiting 
cell motility, cell proliferation, and endothelial tubular structure formation” (1955).  For the 
ex vivo, Pang et al. examined the sprouting of vessels in aortic rings and found that “[c]elas-
trol antagonized the VEGF-induced sprouting in a dose-dependent manner, and 2 μmol/L [c]
elastrol completely blocked microvessel sprouting” (1955) — further evidence that celastrol 
modulates VEGF and inhibit angiogenesis.  For the in vivo study, Pang et al. found that Matri-
gel plugs, which appears dark with high concentration of RBC, became much lighter in color 
in the celastrol-treated group.  Pang et al. used hematoxylin and eosin (H&E) staining and 
discovered that “[c]elastrol at a dose of 10 μg dramatically blocked VEGF-induced vasculature 
formation” (1956).  The results from the study done by Pang et al. provided reasonable evidence 
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to conclude that celastrol does inhibit angiogenesis, and because the study contained an in vivo 
component using white mice, the results can be generalized to say that celastrol will have similar 
results in humans.  Anti-angiogenic agents are now popular with the pharmaceutical field since 
preventing angiogenesis would mean stopping tumor growth and metastasis, making celastrol a 
fairly appealing candidate for future anti-cancer drug.

Pang et al. further investigated the exact mechanism of the anti-angiogenic property of 
celastrol using Western blotting assays.  The results of the Western blot suggested that celastrol 
suppressed the phosphorylation of VEGFR2 in a dose-dependent manner and that perhaps the 
anti-angiogenic property is partially due to inhibition of VEGFR2.  Pang et al. proceeded to 
examine the key molecules along this pathway and found that “[c]elastrol effectively suppressed 
VEGF-triggered activation of the mTOR signaling cascade, including AKT, mTOR, and S6K 
kinases in HUVECs in a concentration-dependent manner …, suggesting that celastrol in-
hibit[ed] tumor angiogenesis through the mechanistic target of rapamycin (mTOR) signaling 
pathway” (1956).

Synerg y between Terpenoids and Current Cancer Therapy
In addition to the individual effects of the terpenoids (triptolide and celastrol), they are ca-

pable of acting in synergy with current methods of cancer therapy (chemotherapy and ionizing 
radiation).  In these synergistic interactions, only low dosages of terpenoids are needed to be 
combined with low dosages of chemotherapeutic drugs or low intensities of ionizing radiation 
to achieve the desirable effects.  The decreased concentrations of each element of the treatment 
will mitigate the induced adverse effects.  Currently, exploiting these synergistic interactions 
is the most rational method of improving cancer therapy until further research is done on the 
terpenoids.

In an experiment by W. Wang et al. to explore the effect of triptolide treatment in con-
junction with ionizing radiation (IR) on human pancreatic cancer cells, the researchers set up 
four levels of the independent variable: vehicle control, triptolide, IR, and triptolide+IR.  W. 
Wang et al. found that triptolide at 25 nM lowered cell survival rate to only 52%, and IR at 
4Gy allowed for 90% of the AsPC-1 cells to survive (4893).  The experimenters then decided to 
combine the treatment at that concentration and intensity for the combined group.  The results 
yield that “cell vitality was reduced to 21% when IR at 4 Gy was combined with triptolide at 
25 nmol/L” (4893).  The experimenters continued their in vitro study, combining triptolide 
at concentrations of 0, 3.125, 6.25, 12, 5, and 25 nmol/L with IR at doses of 0, 2, 4, 6, and 
8 Gy on AsPC-1 cells for 3 weeks.  The results from this revealed that cell growth inhibition 
correlated very strongly with the dose of triptolide (r=0.988, p<0.001) (W. Wang et al. 4894).  
The combined results of this in vitro study would suggest that triptolide dramatically potenti-
ates the effects of the IR.  The inhibition ratio for the combined treatment is much greater than 
that of triptolide or IR alone and the sum of inhibition.  In addition, cell growth inhibition was 
shown to be strongly correlated with the dosage of triptolide, suggesting that perhaps triptolide 
is the key component in this synergistic interaction.  From the data present, it stands to reason 
that triptolide potentiates the effects of IR by sensitizing the cells to radiotherapy.

For their in vivo study, W. Wang et al. injected pancreatic cancer cells into the hind legs of 
nude mice.  After the tumor reached a minimum size of 100 mm3 (7 days after injection), W. 
Wang et al. divided the mice into four different groups and gave each group a different treat-
ment: vehicle control (phosphate buffered saline (PBS)), triptolide (0.25 mg/kg, twice a week), 
ionizing radiation (10 Gy), or a combination of triptolide and IR, with triptolide following IR.  
As expected, triptolide and IR both significantly reduced the size of the tumor (p<0.01), but 
“the combined treatment was even more effective, with four out of eight tumors decreasing in 
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size from 100 mm3 to impalpable over about 3 weeks” (4895).  After the 38 days of treatment, 
W. Wang et al. sacrificed the mice and massed the individual tumors.  W. Wang et al. found 
that the tumors in the control group were large (approximately 1.7 g).  The tumors of the single 
modality treatment group were about 0.2 to 0.3 g, and the tumors in the combined treatment 
group were 0.08 g (p<0.01 for combined vs. single) (4896).  With such drastic difference in tu-
mor size between the single modality treatment group and the combined treatment group and 
a small p-value to support the data, it is reasonable to conclude that triptolide can act in synergy 
with IR and produce even better results than each of them separately.  In addition, because 
mice and humans are very similar biochemically, the data obtained by W. Wang et al. could be 
extrapolated and generalized to apply to humans.

Not only can triptolide act in synergy with IR and increase its efficacy, it can also potenti-
ate the therapeutic effects of chemotherapeutic drugs.  Chang et al. conducted a study to inves-
tigate the synergistic effects of triptolide and doxorubicin, a currently used chemotherapeutic 
drug.  Chang et al. treated the HT1080 fibrosarcoma cell line with a control, triptolide (5 ng/
mL or 20 ng/mL), doxorubicin (100nM), or a combination of triptolide at 5 ng/mL and doxo-
rubicin at 100 nM.  Chang et al. performed a cell viability assay using the trypan blue exclusion 
method and found that the combination of triptolide and doxorubicin “reduced cell viability 
by 65%” (2222).  Chang et al. also reported that “cytotoxic synergy between triptolide and 
doxorubicin was … observed in A549 lung cancer cells, and triptolide also enhanced cell death 
by carboplatin, another topoisomerase II inhibitor, in A549 and HT1080 cells” (2222-2223).  
A Western blotting analysis revealed that triptolide induces post-transcriptional accumulation 
of p53 and reduced the doxorubicin-mediated accumulation of p21.  This finding led Chang et 
al. to conclude that the inhibition of p21 is one of the causes of the decrease in cell vitality and 
increase in apoptosis.  Since p21, a protein that normally activated to induce cell arrest, is inhib-
ited and the tumor suppressor p53 is up-regulated, the malignant cells are proceeding along the 
cell cycle and eventually die because of p53-induced apoptosis.  Had the cells been arrested by 
p21, however, induction of apoptosis would not have been possible.

Like triptolide, celastrol also acts in synergy with current methods of cancer treatment 
— chemotherapy and ionizing radiation.  The studies by Zhu et al. (“Synergistic Anti-cancer 
Activity by the Combination of TRAIL/APO-2L and Celastrol”; “Up-regulation of Death Re-
ceptor 4 and 5 by Celastrol Enhances the Anti-cancer Activity of TRAIL/Apo-2L”) and Sung 
et al. revealed that celastrol produces a synergistic effect when used in combination with tumor 
necrosis factor–related apoptosis-inducing ligand (TRAIL/APO-2L), a cytokine and chemo-
therapeutic agent currently in clinical trials.  TRAIL/APO-2L is member of the TNF family 
that triggers apoptosis in a variety of cancer cell types.  The experiment conducted by Zhu et al. 
demonstrated that “the combination [of celastrol and TRAIL/APO-2L] significantly improved 
the anticancer activities, as revealed by the synergistic inhibitory effects of cancer cell prolif-
eration, the sensitized execution of apoptosis, and the enhanced in vivo antitumor efficiency” 
(“Synergistic Anti-cancer Activity by the Combination of TRAIL/APO-2L and Celastrol” 31).  
When testing for the anti-proliferative properties of the combined therapy, Zhu et al. found 
that the combination of TRAIL/APO-2L with celastrol resulted in a significantly lower half 
maximal inhibitory concentration (IC50 ) value for TRAIL/APO-2L than when TRAIL/APO-
2L was used alone (“Synergistic Anti-cancer Activity by the Combination of TRAIL/APO-2L 
and Celastrol” 26).

To study the apoptotic effects of celastrol and TRAIL/APO-2L, Zhu et al. used flow cy-
tometry and a mitochondrial membrane potential probe (JC-1).  Zhu et al. found that the 
combination of TRAIL/APO-2L and celastrol in the OVCAR-8 cell line and the SW620 cell 
line caused a higher proportion of mitochondrial membrane depolarization, which activates 
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caspases to induce apoptosis, than either TRAIL/APO-2L or celastrol alone.  Zhu et al. also 
used Western blotting analysis to investigate the effects of the combination treatment on the 
PARP and pro-caspases, and they found the combination treatment induced significantly high-
er cleavage of PARP and pro-caspase-3 (“Synergistic Anti-cancer Activity by the Combination 
of TRAIL/APO-2L and Celastrol” 26).  The results collectively demonstrate that “celastrol sen-
sitized TRIAL/APO-2L in activating caspase cascade and triggering apoptosis via death recep-
tors and mitochondrial pathways” (“Synergistic Anti-cancer Activity by the Combination of 
TRAIL/APO-2L and Celastrol” 27).  

The experiment performed by Sung et al. sought to validate the hypothesis that celastrol 
can modulate TRAIL-induced apoptosis and yielded similar results.  The presence of celastrol 
enhanced TRAIL-induced apoptosis by sensitizing the breast cell lines MDA-MB-231, MCF7, 
and T57D to TRAIL.  Sung et al. found that MDA-MB-231 was the most sensitive to TRAIL 
and that T47D cells were most resistant against TRAIL, and when the cells were treated with 
the combination treatment, the rate of apoptosis increased from 9% to 51% for MDA-MB-231 
and from 8% to 38% for the cell line, T47D (11500-11501).  Sung et al. also noted that “the 
combination of the two was highly effective in activation of all caspases and consequent PARP 
cleavage” after a Western blotting analysis (11501).

In addition, Sung et al. also found that celastrol down-regulates the expression of an-
ti-apoptotic proteins related to TRAIL resistance and up-regulates the expression of Bax with 
the Western blotting analysis.  After treating the MDA-MB-231 cells with varying concentra-
tions of celastrol for 24 hours, Sung et al. found that celastrol down-regulated the expression 
of fas-associated protein with death domain-like IL-1β-converting enzyme-inhibitory protein 
(cFLIP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), cellular inhibitor 
of apoptosis 1 (cIAP-1) , X-linked inhibitor of apoptosis protein (XIAP), and survivin in a 
time-dependent manner.  The down-modulation of survivin and XIAP was less noticeable, but 
the down-modulation of cFLIP was very apparent in a dose-dependent manner.  Sung et al. also 
found that celastrol up-regulated Bax in a time- and dose-dependent manner (11501).  These 
findings elucidate one of the mechanisms by which celastrol induces apoptosis.

Zhu et al. also conducted an in vivo study for their experiment by injecting 95-D xeno-
grafts into nude mice.  The researchers found that combination treatment decreased tumor 
growth by 67.0%, which is significantly higher than the inhibition of TRAIL/APO-2L at a 
dosage of 10 mg/kg every 2 days alone (41.0%) and celastrol at a dosage of 2 mg/kg every 2 days 
alone (39.4%) (“Synergistic Anti-cancer Activity by the Combination of TRAIL/APO-2L and 
Celastrol” 28).  In another study later that year, Zhu et al. found that, on SW620 xenografts in 
nude mice, the combination treatment had an inhibition rate of 64.5%, while TRAIL/APO-2L 
had an inhibition rate of 26.3% and celastrol had an inhibition rate of 37.9% (“Up-regulation 
of Death Receptor 4 and 5 by Celastrol Enhances the Anti-cancer Activity of TRAIL/Apo-2L” 
158).  With the results of both in vitro and in vivo studies pointing to a significantly higher 
tumor growth inhibition and increased occurrence of apoptosis when using a combination of 
celastrol and TRAIL/APO-2L, it is reasonable to conclude that celastrol does indeed poten-
tiate the effects of the chemotherapeutic agent TRAIL/APO-2L.  With the increased efficacy 
demonstrated by the combined treatment, the dosages of the individual components would not 
have to be high, and thus adverse effects can be reduced.

As mentioned, celastrol is also capable of potentiating radiotherapy.  In a study conducted 
by Dai et al., it was found that when PC-3 prostate cancer cells were treated with 0.4 μM of 
celastrol, the cells’ sensitivity to ionizing radiation increased significantly (p<.01 at 2 Gy and 
p<.001 at 4 and 6 Gy) (1219).  Dai et al. reported that “[c]elastrol achieved an enhancement 
ratio (ER) of 1.18 ± 0.02 and 1.38 ± 0.06 at a concentration of 0.2 and 0.4 μM, respectively” 
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(1219).  Dai et al. also investigated the optimal schedule of administering celastrol and IR.  
They found that “pretreatment of celastrol for 1 h followed by irradiation … achieved a sub-
stantially greater ER (1.42 ± 0.03)” (Dai et al. 1219).  Regrettably, Dai et al. did not perform 
any test of significance for this piece of data, and thus it is difficult to conclude whether there 
truly was a “substantial” difference between the various treatment schedules described.  

However, based on this data, Dai et al. used this treatment schedule for the following in 
vivo study using PC-3 xenograft tumor model in mice.  Dai et al. found that “the combination 
of celastrol with IR significantly suppressed tumor growth compared with IR alone (p<.01)” 
and “[b]y the last day, the median tumor volume after combination treatment had resulted in 
40% tumor regression compared to IR alone (p<.001) and 80% tumor regression compared 
with untreated control” (1221).  The combination of celastrol with IR also increased the tumor 
doubling time from 5.5 days in the control tumors to 6.0 days in the IR tumors and to 25 days 
in the tumors with combination treatment (Dai et al. 1221).  Dai et al. observed that the mice 
suffered only a modest reversible weight loss as a result of the treatment (1221).  The weight 
loss experienced by the mice in this study is minimal when compared to the full adverse effects 
of using radiotherapy, which include extraneous damage to surrounding tissues and organs 
(especially fast-growing cells), hair loss, and lowered immunity.  By exploiting the synergy be-
tween celastrol and IR, cancer therapy can be improved very quickly to become more effective 
while minimizing the side-effects.  Clinical trials on human subjects must be conducted before 
implementation, but if the results from this study by Dai et al. are accurate, then there is great 
promise for improving cancer therapy.

Toxicity and Adverse Effects of T. wilfordii and Terpenoids
One major obstacle in the medicinal usage of T. wilfordii and its terpenoids is their tox-

icity.  Like with all other medications, in addition to the desired therapeutic effects, triptolide 
and celastrol also induce adverse effects, including reproductive damage, nausea, diarrhea, and 
other gastrointestinal abnormities.  However, while triptolide and celastrol are known to pos-
sess strong toxicity capable of causing permanent damage, extracts of T. wilfordii have not been 
shown to possess significant toxicity.

Li et al.’s reported in a review on pharmacology and toxicology of triptolide that:
According to data from the Chinese Food and Drug Administration (CFDA) (2004-
2011.9), commercial preparations of Triptergygium wilfordii are responsible for 633 
adverse reaction cases, including 53 severe cases, that involved reproductive toxicity, 
hepatotoxicity, and renal cytotoxicity, among other outcomes.  Moreover, 266 clini-
cal observations and follow up reports concluded that Tripterygium wilfordii caused a 
number of adverse effects, such as the damage to the digestive system (including liver 
injury and stomachache) and the endocrine and reproductive system.  Additionally, 
271 patients with rheumatoid arthritis reported side effects of Tripterygium wilfordii, 
namely digestive tract symptoms and irregular menstruation. (74)

At first glance, this report from the CFDA is a strong piece of evidence against the usage 
of extracts of T. wilfordii, but it should be noted that Li et al. did not mention what types of ex-
tracts were used.  This lack of information creates a large fallacy in the argument that extracts of 
T. wilfordii are toxic.  Depending on the chemical composition of the extracts, which is some-
thing that can be controlled through the usage of different solvents to produce the extract, the 
toxicity can easily be changed.  Furthermore, the placebo effect must also be taken into account, 
which can lead to somatization of an imagined side-effect.  In addition, Li et al. mentioned af-
terward that these adverse effects were mostly triptolide-induced toxicity.  

Contrary to the reporting of the CFDA, a double-blind, placebo-controlled study by Tao 
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et al. using an ethanol/ethyl acetate extract of T. wilfordii, which is known to contain the stron-
gest bioactive compounds (refer to He et al., “Antiangiogenic Activity of Tripterygium wilfordii 
and its Terpenoids”), to treat rheumatoid arthritis reported that the treatment “was well toler-
ated by most patients in this study” (1735).  Tao et al. reported that “the frequencies of patients 
who developed ≥ 1 adverse event were 4 of 12, 6 of 12, and 5 of 11, respectively, for the placebo, 
low-dose extract, and high-dose extract groups” (1741).  Although the data appear to show that 
patients with treated with extract from T. wilfordii develop side-effects, when subjected to a chi-
square test of homogeneity, the calculated χ2 value was 0.725 with a p-value of 0.696, which is 
greater than any reasonable level of significance selected; thus, it is not reasonable to conclude 
that the adverse effects are caused by the ethanol/ethyl acetate extract any more than the pla-
cebo.  Tao et al. also noted “[m]any of the side effects noted in patients treated with placebo as 
well as in those treated with extract, suggesting that the side effects may not be specifically asso-
ciated with administration of the drug,” which further supports that the ethanol/ethyl acetate 
extract of T. wilfordii does not necessarily induce adverse effects (1742).

However, there is one side effect of T. wilfordii that is known to exist: reproductive tox-
icity.  According to a review by Qian et al., T. wilfordii’s anti-fertility effect on males was first 
documented in 1986.  Qian et al. wrote that “in nine rheumatoid arthritis patients treated with 
the decoction of Tripterygium wilfordii and glycosides of T. wilfordi (GTW) for a total period 
of 2-56 months, necrospermia or azoospermia occurred” (121).  The extract used to treat these 
patients is a “multi-glycosides” extract of T. wilfordii, hence GTW.  The report of the reproduc-
tive adverse effects of GTW sparked great interest as a potential contraceptive, and researchers 
began to study the anti-fertility effects of GTW on male Wistar and Sprague Dawley (SD) rats, 
both done by Qian et al. in 1986 and 1987, respectively.  Qian et al. found that: 

When dosed with 10 mg/kg.d of GTW, 6 times a week, [the rats] became infertile after 8 
weeks of dosing.  There was a sharp decrease in the epididymal sperm motility and a moderate 
decrease in the sperm concentration.  No apparent toxicity was seen and a full recovery of fertil-
ity was observed 4-5 weeks after cessation of treatment. (122)

Another study by Qian et al. in 1989 reported similar reversible results in the semen of 
male rheumatoid arthritis patients (Qian et al. 122).

Because triptolide is the main bioactive component of all the different extracts of T. wil-
fordii, including GTW (Chen F. et al. 2696), several studies on the adverse effects of triptolide 
have been conducted over the years.  One of the more researched side effects is reproductive 
toxicity.  Liu et al. conducted an experiment to examine the antifertility effects of triptolide on 
female SD rats, which mirrored the study done by Qian et al. in 1986.  Liu et al. found that the 
toxic effects began to show starting at a concentration of 200 μg/kg.  The 200- and 400- μg/kg 
group exhibited loss in body weight and in relative size of the ovary and the uterus.  Liu et al. 
also performed a serum steroid and gonadotropin level analysis and found that “doses of 200- 
and 400 μg/kg of triptolide significantly increased both FSH and LH levels in serum, compared 
to their respective vehicle control” (3).  One other effect that Liu et al. found in the rats was the 
increase in the duration of the metestrous and diestrous phases and the decrease in duration 
of the proestrous and estrous phases.  Overall, Liu et al. found that these effects were absent in 
the 100 μg/kg group, suggesting that triptolide does not induce any noticeable effects at low 
concentrations.  The collective results from the studies by Qian et al. and Liu et al. suggests that 
triptolide induces adverse effects on both the male and female reproductive system.

Strangely, although celastrol also demonstrates strong therapeutic potential for cancer and 
for a multitude of other diseases, such as rheumatoid arthritis and Alzheimer’s, not many studies 
on the toxicity and adverse effects of celastrol have been done.  The only explicit mentioning of 
the adverse effects of celastrol is its detrimental effects on zebrafish (Danio rerio).  He et al. was 
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the first to note that celastrol at concentrations higher than 0.62 μM killed 50% of the embryos 
in the test group (“Antiangiogenic Activity of Tripterygium wilfordii and its Terpenoids” 66).  
These results were then iterated in a study by S. Wang et al. in 2010 investigating the toxicity 
of celastrol on the development of zebrafish.  S. Wang et al. found that “embryos treated with 
0.5-μM or higher concentrations of celastrol … displayed several developmental abnormalities, 
including no blood flow, edema in the pericardial sac, and tail malformation.  Embryos exposed 
to 1.0 μM of celastrol had no blood flow in trunk vessels at 48 [hours past fertilization]” (62).  
The lack of blood flow is evident of the potent anti-angiogenic effect of celastrol, but the other 
side effects demonstrate that celastrol lacks the target specificity that is required of a drug.  Its 
wide-acting nature, in this case, proves detrimental to the test subjects.  However, when taken 
into account that test subjects were developing embryos, the weight placed on these side effects 
can be lessened.  If celastrol is developed into a drug with the intended recipient being an adult 
human who has finished growing, then the abnormalities induced in developing embryos may 
be no longer applicable.  Of course, that is not to say that celastrol does not possess any other 
adverse effects; they are, as of right now, undetermined.

Proposed Herbal Treatment using the Roots of T. wilfordii
Compared to the individual compounds found in T. wilfordii, the plant root itself, where 

the compounds are extracted, does not have such severe toxicity.  Although the plant is origi-
nally used for anti-inflammatory purposes, T. wilfordii may also exhibit anti-cancer properties, 
since its components have anti-cancer properties.  The effectiveness of using the whole plant 
may not be as great as the individual components; however, the toxicity can be mitigated.  This 
hypothesis could be tested through an experiment, consisting of an in vitro study on different 
cancer cell lines and an in vivo study using rats as the animal model.

First, the herbal extract must be prepared following the procedure by He et al. (“Anti-
angiogenic Activity of Tripterygium wilfordii and its Terpenoids”).  Four kilograms of the de-
barked root of T. wilfordii will be obtained.  The root will be cut into smaller pieces and placed 
in a solution of 95% ethanol.  The extraction will be performed three times with each lasting 
two hours.  The ethanol liquid extract will then be evaporated in vacuo, and the mass of the 
remaining solute will be measured (62).  The ethanol extract will be dissolved again in water at 
concentrations of 8 μg/mL, 16 μg/mL, 39 μg/mL, 78.5 μg/mL, 196 μg/mL, 392 μg/mL, 588 
μg/mL, and 785 μg/mL.  These concentrations were calculated based on the concentrations 
used in the studies by Yang et al., He et al. (“Triptolide Functions as a Potent Angiogenesis In-
hibitor”), and Kiviharju et al. and the percent yield of triptolide and celastrol from an ethanol 
extraction indicated by He et al. (“Antiangiogenic Activity of Tripterygium wilfordii and its Ter-
penoids”).  The listed concentrations above in addition to the control (0 μg/mL) will be used be 
on different cancer cell lines in vitro.

Five different types of cancers (see Table 2) were selected to be used as subjects for this 
experiment.  All five of these cancers have been previously used in research on triptolide and 
celastrol, and they are listed as the common types of cancers to cause death in the U.S. (Center 
for Disease and Control and Prevention, “ Cancer Statistics by Cancer Types”).

The techniques to be used to analyze the results include a cell vitality assay, cell prolif-
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eration assay, apoptosis assay, cell progression analysis, a Matrigel plug assay to assess the an-
ti-angiogenic property, and Western blotting (immunoblotting) to analyze the activities of the 
different proteins involved in apoptosis, such as p53, p21, and PARP.  The cell vitality assay will 
be performed using the trypan blue exclusion method.  Cells will be incubated in 2% trypan 
blue solution.  Afterward, the cells will be counted using a hemocytometer.  The number of cells 
that retain the dye are recorded — these are the nonviable cells — and the total number of cells 
are also recorded (Kiviharju et al.; Chang et al.).  The cell proliferation assay will be performed 
using an MTT assay like Zhu et al. described (“Synergistic Anti-cancer Activity by the Combi-
nation of TRAIL/APO-2L and Celastrol”; “Up-regulation of Death Receptor 4 and 5 by Cel-
astrol Enhances the Anti-cancer Activity of TRAIL/Apo-2L”).  The cells will be incubated in 
the dye, MTT and then dissolved in dimethyl sulfoxide (DMSO) for 4 hours.  Afterward, they 
are analyzed using a plate spectrophotometer at 570 nm (Zhu et al., “Synergistic Anti-cancer 
Activity by the Combination of TRAIL/APO-2L and Celastrol”; Zhu et al., “Up-regulation of 
Death Receptor 4 and 5 by Celastrol Enhances the Anti-cancer Activity of TRAIL/Apo-2L”).  
The apoptosis assay will be performed using annexin V/ propidium iodide (PI) staining and 
FACS analysis (Chang et al.; He et al., “Triptolide Functions as a Potent Angiogenesis Inhibi-
tor”; Zhu et al., “Synergistic Anti-cancer Activity by the Combination of TRAIL/APO-2L and 
Celastrol”; Zhu et al., “Up-regulation of Death Receptor 4 and 5 by Celastrol Enhances the 
Anti-cancer Activity of TRAIL/Apo-2L”).  Cell cycle progression is analyzed by counting the 
number of cells in each phase of the cell cycle by flow cytometry (Peng et al.).

For the in vivo study, the model organism to be used is the BALB/C strain of laboratory 
mice, a common model system when testing human pharmaceutical products.  The selected 
mice will be of the same age and vitality and will be split evenly between male and female.  
Then, the mice will then be stratified into males and females and will be randomly assigned 
to cancer groups. Within each group, they will be randomly designated a dosage of treatment 
(control, 78.5 mg/kg/day, 392.5 mg/kg/day, 785 mg/kg/day, 1177.5 mg/kg/day, 1570 mg/kg/
day, 1962.5 mg/kg/day, 3925 mg/kg/day, 5887.5 mg/kg/day).  These dosages were calculated 

Table 2. Cancer Cell Lines for Herbal Treatment Experiment

Breast cancer MDA-345 (Yang et al.)
MDA-MB-231(Sung et al.) 
MCF-7 (Sung et al.)
T47D (Sung et al.)

Colorectal cancer SW620 (Zhu et al., “Up-regulation of Death 
Receptor 4 and 5 by Celastrol Enhances the 
Anti-cancer Activity of TRAIL/Apo-2L”)
HT29 (Liu et al.; Wang, Z. et al.)
SW480 (Liu et al.; Wang, Z. et al.) 
Caco 2 (Wang Z. et al.)

Lung cancer A549 (Chang et al.)

Ovarian cancer OVCAR-8 (Zhu et al., “Up-regulation of 
Death Receptor 4 and 5 by Celastrol Enhanc-
es the Anti-cancer Activity of TRAIL/Apo-
2L”)

Prostate cancer AsP3-1 (Wang W. et al)
PC-3 (Dai et al.)
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based on the dosages used by Yang et al. and He et al. (“Triptolide Functions as a Potent Angio-
genesis Inhibitor”) and the percent yield of triptolide and celastrol from a 95% ethanol extract 
by He et al. (“Antiangiogenic Activity of Tripterygium wilfordii and its Terpenoids”).

The effectiveness of the drug will be determined by the mass and the volume of the tumor 
throughout the study.  A toxicity study will be done simultaneously.  Weight loss and other visi-
ble physical changes will be noted.  Blood tests will be performed to analyze fluctuations in hor-
mones, especially gonadotropins, and the presence of toxic byproducts from the metabolism of 
the T. wilfordii extract.  Subjects will be taken out to humane end points and will be dissected 
and fully studied to determine whether the cause of advanced disease is related to drug admin-
istration.  Surviving test subjects will be euthanized at the end of the study to record damage to 
the internal organs, especially the reproductive organs.
Conclusion

Cancer is a dangerous disease caused by a dysfunction of cell signaling regulation, lead-
ing to more deaths than violent crimes in the U.S.  Current methods of treating cancer are 
chemotherapy and ionizing radiation, and although they are effective, the induced side-effects 
are severely damaging.  In addition, with cancer cells growing more resistant to these forms of 
treatment, higher dosages and stronger drugs are being developed, leading to even greater ad-
verse effects and toxicity.  One approach taken to rectify this problem is to look for alternative 
treatment methods in Eastern medicine.  

The herbal alternative proposed was the roots of Tripterygium wilfordii, known in China 
as lei gong teng (雷公藤) which translates to “thunder god vine.”  T. wilfordii has been used 
in Chinese medicine for fevers, chills, and auto-immune inflammatory diseases.  Clinical trials 
are being conducted in China to develop extracts and bioactive compounds of the relatively 
non-toxic root of this plant into medications for rheumatoid arthritis.  In recent years, these 
bioactive compounds triptolide and celastrol have also demonstrated strong anti-cancer effects, 
but they can induce detrimental side effects.  One of the more severe side-effects is damage to 
the reproductive system of males and females and decreasing spermatogenesis and size of the 
ovaries and the uterus (Qian et al.; Liu et al.).

Therefore, to make use of the anti-cancer effects of the plant while minimizing adverse 
effects and toxicity, a solution was proposed to use a crude extract of the roots as a treatment for 
cancer.  To test the effectiveness and safety of this treatment, an experiment was designed exam-
ine these two properties in vitro and in vivo.  Previously used cancer cell lines will be used in this 
study, and analysis of efficacy and toxicity will be done using a variety of assays as in previous 
studies.  The in vivo study will use tumor xenografts injected into white mice, a common model 
organism used for the development of new drugs.  Effectiveness will be measured by the mass 
and volume of the tumor, and toxicity will be measured by physical changes such as weight loss, 
fluctuations in hormones, and presence of byproducts caused by metabolism of compounds 
within the extract of triptolide.  If the treatment is proven to be ineffective and/or too toxic, 
then other types of extracts of T. wilfordii containing triptolide and celastrol can be tested.  
Research could also be taken in the direction of the development of a multi-component drug 
containing triptolide and/or celastrol and other non-bioactive compounds within T. wilfordii 
to mitigate the side-effects.

In addition, regardless of the results of this proposed experiment, more research on the 
plant must be conducted to understand the mechanisms of the interaction of triptolide and 
celastrol with the various types of cancers.  Another area of research could focus on other related 
plants and herbs used in Chinese herbal medicine that are related to T. wilfordii.  There may 
exist another plant that exhibits anti-cancer activities that have yet to be discovered.  With the 
current conundrum faced by Western pharmaceutical practice with the increase in side-effects, 
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it is crucial to investigate other forms of medicine and to integrate them into modern practice.
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